
Stable Paramagnetic Carbenemetal Complexes; Syntheses and Properties of Low Spin d⁷ (1,3-Dimethylimidazolidin-2-ylidene)iron(1) Tetrafluoroborates[†]

By MICHAEL F. LAPPERT,* JONATHAN J. MACQUITTY, and PETER L. PYE (School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

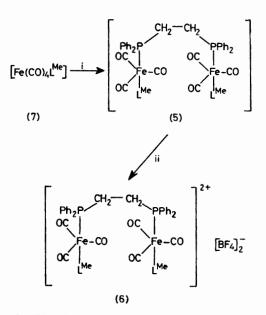
Summary Stable (at ca. 20 °C), green, crystalline, paramagnetic carbeneiron(I) salts (a) $[Fe(CO)_2(L^{Me})(L')(L'')]^+$

 $[BF_4]^- [L^{Me} = -\dot{C}N(Me)CH_2CH_2\dot{N}Me]$ (2; $L' = L^{Me}$, PPh₃ or PEt₃, and L'' = CO), (3; $L' = PPh_3$, $L'' = L^{Me}$), and [4; $L' = L'' = PPh_3$, PEt₃, or P(OPh)₃], and (b) [Fe₂(CO)₆- $(L^{Me})_2(\mu$ -Ph₂PCH₂CH₂PPh₂)]²⁺[BF₄]⁻² (6) are obtained by AgBF₄ oxidation of an appropriate Fe⁰ precursor (1) or (5), or from (2) by CO-PPh₃ exchange or disproportionation; i.r. [v(CO)] and e.s.r. (g and $\alpha(P)$] measurements on (2)—(4) and (6), and cyclic voltammetric data (E_4) on a neutral Fe⁰ complex indicate that while the odd electron is substantially metal-centred, the carbene ligand L^{Me} contributes to stability by its strong Fe-C bond and delocalisation of positive charge.

WE report the first stable crystalline and characterised (analysis, i.r., e.s.r., and μ_{eff}) paramagnetic carbenemetal complexes, the green iron(I) tetrafluoroborates (2)—(4) (Scheme 1 and Table) and the unusual di-iron(I) analogue (6) (Scheme 2) (both of interest also as stable paramagnetic Fe^I complexes). Three synthetic procedures were employed (Scheme 1: i, ii, and iii). Evidence for (iii) as a disproportionation rather than a ligand displacement reaction is illustrated by the AgPF₆-CH₂Cl₂ oxidation (i) of [Fe(CO)₃(L^{Me}) {P(OPh)₃}] in the cavity of an e.s.r. spectrometer. At -60 °C, there appears a doublet assigned to [Fe(CO)₃(L^{Me}) {P(OPh)₃}]⁺; which, upon warming, decays, giving way to a triplet, assigned to [Fe(CO)₂(L^{Me}) {P-(OPh)₃}]⁺.

SCHEME 1. Synthesis and reactions of (1,3-dimethylimidazolidin-2-ylidene)iron(1) tetrafluoroborates: i, AgBF₄-THF, 20 °C (L' = L^{Me}, PPh₃, or PEt₃) or -60 °C [L' = P(OPh)₃]; ii, PPh₃-THF, 20 °C; iii, THF (or L'-THF), >20 °C (L' = PPh₃ or PEt₃) or -20 °C [L' = P(OPh)₃]. Some data on compounds (2)—(4) are in the Table; all analysed satisfactorily. A low temperature species (2, L' = CO) is assigned merely on the basis of e.s.r. spectroscopy in CH₂Cl₂ (g = 2.049) at -60 °C.

Previously there was only low temperature e.s.r. $(Cr^{-1}, Mo^{-1}, or W^{-1})^1$ or electrochemical $(Cr^{I} \text{ or } W^{I})^2$ evidence for the existence of transient paramagnetic carbenemetal complexes in solution.


† No reprints available.

Oxidation of a CH_2Cl_2 or tetrahydrofuran (THF) solution of the yellow³ [Fe(CO)₃(L^{Me})₂] gave an intense green Fe^I complex (g = 2.044), using tetracyanoethylene, trityl chloride (procedures previously used⁴ to obtain Mo^I complexes from [Mo(CO)₂{Me₂P(CH₂)₂PMe₂}]), or a deficiency of iodine. An excess of the reagent afforded the brown [Fe^{II}(CO)₂(L^{Me})₂I₂].³

TABLE. I.r. and e.s.r. data^a for complexes (2)-(4).

Compound	v(CO)/cm ⁻¹	g	a(P)/G
$(2; L' = L^{Me})$	2058ms, 1978vs	2.044	
$(2; L' = PPh_a)$	2067s, 2001vs ,1985s	2.047	22.6
$(2; L' = PEt_3)$	2061vs, 1992s, 1976vs	$2 \cdot 046$	23.9
$(3; L' = PPh_3)$	1973vs, 1904vs	$2 \cdot 045$	18.5
$(4; \mathbf{L'} = \mathrm{PPh}_{3})$	1980s, 1918vs	2.047	20.3
$(4; L' = PEt_3)$	1969s, 1900vs	2.046	$22 \cdot 2$
$[4; \mathbf{L'} = \mathrm{P}(\mathrm{OPh})_{3}]$	2022vs, 1960vs	2.042	31.5
^a In CH_2Cl_2 at 20 °C.			

The facility of the conversion $(2) \rightarrow (4)$, $[Fe(CO)_3(L^{Me})-(L')]^+ \rightarrow [Fe(CO)_2(L^{Me})(L')_2]^+$, decreases in the sequence $L' = P(OPh)_3 > PPh_3 > PEt_3 > L^{Me}$, and reflects the decreasing π -acceptor and increasing σ -donor strength of L'.

SCHEME 2. Binuclear μ -bis(diphenylphosphino)ethane-di-iron(0) and -di-iron(1) complexes: i, $Ph_2PCH_2CH_2PPh_2$, h_V , PhMe, 25 °C; ii, $AgBF_4$ -THF, 20 °C; (7), from $[Fe(CO)_5]$ -L^{Me}₂, n-C₆H₁₄, 65 °C (see ref. 3) (5), $[v(CO) 1860 \text{ s cm}^{-1}]$; (6), $[v(CO) 2070 \text{ s}, 2005 \text{ s}, \text{ and } 1985 \text{ s cm}^{-1}]$, g = 2.045, a(P) = 23.8 G; each of (5)–(7) gave satisfactory microanalyses.

It is interesting that compound (6) has two independent iron atoms in the low spin d^7 configuration, rather than an Fe-Fe bond as in known⁵ binuclear dimetallocycles. This is shown by its magnetic moment at 20 °C [3·48 (by ¹H n.m.r. spectrometry in CH_2Cl_2) or 3·5 (solid state, Faraday method)] which is almost exactly twice the value of 1·68 B.M. (by ¹H n.m.r. spectrometry in CH_2Cl_2 at 20 °C) for $[Fe(CO)_2(L^{Me})(PPh_3)_2]^+[BF_4]^-$.

Comparison of our e.s.r. spectroscopic data (Schemes 1 and 2 and Table) with those reported for other Fe^I systems,⁶ particularly [Fe(CO)₃(L')₂]⁺PF₆⁻ (L' = a tertiary phosphine or phosphite),⁷ show that the unpaired electron is still mainly localised on the Fe atom. Values of a(P) are larger, possibly owing to the higher σ -donor- π -acceptor ratio of L^{Me} compared to PR₃ or P(OR)₃. The i.r. spectroscopic data show the expected increases in ν (CO) upon oxidation of Fe⁰ \rightarrow Fe^I. The trigonal bipyramidal structure of the Fe⁰ precursor becomes distorted upon oxidation, *e.g.*, three ν (CO) bands of approximately equal intensity are observed in [Fe(CO)₃(L^{Me})(PPh₃)]⁺BF₄⁻, compared with one very strong band in the Fe⁰ precursor.

Cyclic voltammetry on $[Fe(CO)_3(L^{M_0})(PPh_3)]$ in CH_2Cl_2 indicates a reversible one-electron oxidation (the time-scale is too fast to detect possible disproportionation), with $E_{\frac{1}{2}} = 0.12$ V compared with $E_{\frac{1}{2}} = 0.34$ V for $[Fe(CO)_3(PPh_3)_2]$;⁷ L^{Me} therefore increases the ease of oxidation. This may explain why iodine does not effect a simple one-electron oxidation for the latter complex. The complex [Fe(CO)₂-(L^{Me})(PPh₃)₂]+BF₄⁻ undergoes reversible one-electron reduction ($E_{\frac{1}{2}} = -0.50$ V) and this suggests an unusual synthetic route to novel tri-substituted Fe⁰ derivatives (*cf.*, ref. 3), *e.g.*, *via* Na-Hg reduction of the appropriate Fe¹ precursors ($E_{\frac{1}{2}}$ vs. S.C.E., 0.2M in Bun₄N+BF₄⁻).

The new cations vary in thermal, aerial, and hydrolytic sensitivity, from $[Fe(CO)_4(L^{Me})]^+$ (only observable below -20 °C) to $[Fe(CO)_2(L^{Me})(PPh_3)_2]^+$, and are insensitive to air or water even in solution and thermally very stable. The general and unexpected stability of the majority of the Fe^I tetrafluoroborates is attributed mainly to the high σ -donor strength of the carbene ligand.³ A d^7 low spin system (as in Fe^I) may be favoured because of Jahn-Teller stabilisation.

We thank Dr. C. J. Pickett for the cyclic voltammetry data and the S.R.C. for support.

(Received, 10th March 1977; Com. 231,)

- ¹ P. J. Krusic, U. Klabunde, C. P. Casey, and T. F. Block, J. Amer. Chem. Soc., 1976, 98, 2015.
- ² M. K. Lloyd, J. A. McCleverty, D. G. Orchard, J. A. Connor, M. B. Hall, I. H. Hillier, E. H. Jones, and G. K. McEwen, J.C.S. Dalton, 1973, 1743.
- ³ M. F. Lappert and P. L. Pye, J.C.S. Dalton, in the press.
- ⁴ J. A. Connor and P. I. Riley, J.C.S. Chem. Comm., 1976, 634.
- ⁵ R. J. Haines and A. L. DuPreez, *J. Organometallic Chem.*, 1970, **21**, 181. ⁶ H. D. Murdoch and E. A. C. Lucken, *Helv. Chim. Acta*, 1964, **47**, 1517.
- ⁷ N. G. Connelly and K. R. Somers, J. Organometallic Chem., 1976, 113, C39.